Classifying Edits to Variability in Source Code
Appendix

This appendix accompanies our paper Classifying Fdits to Variability in
Source Code published at the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.

Our appendix consists of four parts. In Section 1, we present an extended
formalization of our concepts in the Haskell programming language to show
that variation trees and variation diffs can be parameterized in their node
types to support further language constructs. In Section 2, we prove that
variation diffs are complete regarding edits to variation trees and that our
edit classes are complete and unambiguous. In Section 3, we show that edit
patterns from related work (Al-Hajjaji et al. [2016], Stanciulescu et al. [2016])
are either composite edits built from our edit classes or similar to our edit
classes. In Section 4, we include the complete results of our validation for all
44 datasets.

Contents

1 Extended Formalization
1.1 Logic. o o e
1.2 Variation Trees,
1.3 Variation Diffs
1.4 Extension: Elif Directives

2 Proofs
2.1 Completeness of Variation Diffs
2.2 Proofs for Edit Classes
2.2.1 Completeness of Edit Classes
2.2.2 Unambiguity of Edit Classes

3 Composite Edits
3.1 Al-Hajjaji et al. [2016]
3.1.1 Feature Dependency Operators
3.1.2 Variability-Mapping Operators
3.1.3 Domain Artifact Operators
3.1.4 Conclusion
3.2 Stanciulescu et al. [2016]
3.2.1 Code-Adding Patterns
3.2.2 Code-Removing Patterns
3.2.3 Other Patterns
3.24 Conclusion

4 Complete Validation Results

10
12

16
16
21
21
24

26
26
26
27
30
31
32
32
34
36
37

39

1 Extended Formalization

In this section, we show how we can parameterize variation trees and variation
diffs by their set of supported node types, which in the paper is fixed to
{artifact,mapping,else}. As an example, we then provide an extension
of our definitions of variation trees and variation diffs to also support elif
directives.

We reformulate our definitions from the paper in the Haskell program-
ming language. This has the following benefits:

Type Correctness. By compiling the source code we can ensure type
correctness and thus a correct encoding of our definitions.

Extensibility. Haskell provides suitable mechanisms to formulate possible
extension points of our definitions. In particular, we can define how
variation trees and variation diffs can be parameterized in their node
types using type classes.

Explicit Requirements. Haskell forces us to make requirements on our
inputs explicit (with type class constraints). Thus, we can and have to
explicitly list all requirements we impose on the used logic and set of
node types. This verifies that we indeed require only some operators
(with their usual semantics).

Referential Transparency. As Haskell is a pure functional programming
language with referential transparency, we can perform proofs using
equational reasoning (i.e., substituting definitions).

Transition to Proof Assistants. Haskell is a language halfway between
a practical language and a proof assistant, such as CoQ), Isabelle, or
Agda. Thus, our code will be easier to adapt to these tools should we
desire to do further and more rigorous formal proofs in the future.

1.1 Logic

While we use propositional logic to map implementation artifacts to features
in the examples of our paper, our concepts support any kind of logic as long
as it supports conjunction A and negation — and has a neutral value true
(in fact, we only need negation for else nodes as we will see later). We
thus make the requirements to the used logic explicit such that we can later
state which parts and functions require certain properties of the logic. We
formulate each requirement as a type class (loosely similar to interfaces in

-

9

object-oriented programming) that states that certain functions are defined
for a type £ (abbreviation of formula):

class Negatable f where
Inot :: £ > £

class HasNeutral f where
ltrue :: f

class Composable f where
land :: [£f] -> £

class Comparable f where
limplies :: £ -> £ -> Bool

The first type class says that a type £ is Negatable if there exists a function
lnot that takes a value of type f and returns a value of type £. A concrete
implementation of Negatable for a concrete type £ then has to provide a
definition for 1not and ensure that it entails the respective semantics (i.e., a
negation of a formula). Analogous, the other type classes say that a type £ (1)
has a neutral value if there exists a value 1true of type £, (2) is composable
(i.e., supports conjunction A) in terms of an operator land that takes a list
of values and returns their conjunction', and (3) is comparable if two values
can be compared in terms of implication by a function limplies (see Section
4 in the original paper). To ensure that names are unique, we prepend each
function name with 1, which stands for logic. (We continue this naming
scheme when necessary.)

Propositional formulas as we use in our paper and our tooling indeed
satisfy all these requirements:

data PropositionalFormula a =
PTrue

| PFalse

| PVariable a
| PNot (PropositionalFormula a)
| PAnd [PropositionalFormula a]
| POr [PropositionalFormula a]
deriving (Eq)

instance Negatable (PropositionalFormula a) where

1[x] is syntax (sugar) for a list of values of type x.

lnot PTrue = PFalse
1not PFalse = PTrue
Inot p = PNot p

instance HasNeutral (PropositionalFormula a) where
ltrue = PTrue

instance Composable (PropositionalFormula a) where
land []1 = PTrue
land 1 = PAnd 1

instance Comparable (PropositionalFormula a) where
limplies a b = isTautology (POr [lnot a, b]l)

We define propositional formulas as a sum type that reads as follows: A
PropositionalFormula is either (1) the value true, (2) the value false, (3) a
variable with a value a, (4) a negation — of a formula, (5) a conjunction A of a
list of formulas, or (6) a disjunction V of a list of formulas. We parameterize
PropositionalFormulas by a type a that determines which values are stored
in variables.? For example, the type a could be String if variables should
be named, or Int if variables should be indexed. PropositionalFormulas
support all of the four requirements we introduced, which we show by
providing an instance of the type class of each requirement. We omit the
definition of the auxiliary function isTautology here that invokes a SAT
solver on a given formula to determine whether the given formula is a
tautology.

1.2 Variation Trees

We now translate our definition of variation trees from the paper to its
Haskell equivalent which allows us to (1) make the requirements to the used
logic explicit by referencing the type classes introduced in the last section,
and (2) formulate the set of node types as a parameter for defining a variation
tree. Let us recall our original definition:

Definition 2.2 (Variation Tree). A variation tree (V, E,r,7,l) is a tree
with nodes V, edges E C V x V, and root node r € V. Each edge (z,y) € E
connects a child node x with its parent node y, denoted by p(x) = y. The
node type 7(v) € {artifact,mapping,else} identifies a node v € V either
as representing an implementation artifact, a feature mapping, or an else

2In object-oriented programming, such a type parameter is usually known as a generic
type (e.g., an equivalent Java definition would be class PropositionalFormula<A>).

-

-

[I N

branch. The label [(v) is a propositional formula if 7(v) = mapping, a
reference to an implementation artifact if 7(v) = artifact, or empty if
7(v) = else. The root r has type 7(r) = mapping and label I(r) = true. An
else node can only be placed directly below a non-root mapping node and
a mapping node has at most one child of type else.

To reference nodes V', we introduce a Unique Universal IDentifier as an
alias for Int:

type UUID = Int

We can then define nodes, edges, and finally variation trees.

data VINode 1 f = VTNode UUID (1 £f)

data VTEdge 1 £
VTEdge {

childNode :: VTNode 1 f,

parentNode :: VTNode 1 f

}

data VariationTree 1 f = VariationTree [VINode 1 f] [VTEdge 1 f]

All data types are parameterized by a label set type 1 and formula type
f. The formula type f describes the used logic as introduced earlier, one
possible type being PropositionalFormula a. The type 1 describes the set
of node types, which is determined by 7 in our original definition. In our
paper, the set of node types is fixed to {artifact,mapping,else} = im(7).
Yet, variation trees are more general: They are also valid without else
statements but can also be extended by further statements (e.g., elif). We
thus model the set of available node types as the type parameter 1 here and
explain requirements for it later in detail.

A VTNode consists of its identifier and a label of type (1 £), which means
that the label of the node is itself parameterized in the formula type £. We
store the type 7(v) and label [(v) within a node v in terms of the label (1
f) for two reasons: First, by storing properties in nodes instead of accessing
them through dedicated functions 7 and I we do not have to manually ensure
that the respective functions are defined for all nodes in a variation tree
(and only for those nodes). Second, the type of the label I(v) of a node v
depends on the node’s type 7(v). This implementation matches our original
definition because we could define the functions 7 and [of variation trees to

-

N

w

-

N

w

just return the respective values that are stored within a node, but we omit
these functions for brevity here.

Edges consist of a childNode and parentNode. We define edges here as
a record type instead of a simple algebraic data type data VIEdge 1 f =
VTEdge (VINode 1 f) (VINode 1 f) to avoid confusion about which node
is the child and which node is the parent.

We define variation trees as the type VariationTree 1 f that has a list
of nodes [VTNode 1 f] and edges [VTEdge 1 f].

To define feature mappings and presence conditions, we have to be able
to access the parent p(v) of a node v:

import Data.List

parent :: VariationTree 1 f -> VINode 1 f -> Maybe (VINode 1 f)
parent (VariationTree _ edges) v =
fmap parentNode (find (\edge -> childNode edge == v) edges)

To get the parent of a node v in a given VariationTree with edges, we first
find the edge whose child node is v (via find (\edge -> childNode edge
== v) edges) and then return the parentNode stored in that edge.®

To complete our formalization of variation trees in Haskell, we now
define requirements for node types 7 and labels . As mentioned earlier, the
type of the label I(v) of a node v depends on the node’s type 7(v). As we did
for the used logic in Section 1.1, we define our requirements to node types
and labels using a type class:

type ArtifactReference = String

class VTLabel 1 where
makeArtifactLabel :: ArtifactReference -> 1 f
makeMappinglabel :: (Composable f) => f -> 1 f

3For those not familiar with Haskell: The function find :: (a -> Bool) -> [a] ->
Maybe a takes a predicate a -> Bool and returns the first element in a given list [a] for
which the predicate evaluates to true. In case no such element exists, £ind returns Nothing.
In particular, the return type Maybe a either represents a found value (Just a) or represents
failure in terms of the value Nothing. In Java, C#, C++, etc. Nothing would correspond
to null. While in Java, any reference type can have value null, no type can do so in
Haskell. Maybe is a type that explicitly makes a type nullable. To extract the parentNode
of the found edge, we thus use fmap parentNode that either returns the parentNode of a
found edge, or does nothing in case no element was found. You may read fmap parentNode
mas if (m is (Just a)) then (Just (parentNode a)) else Nothing.

-

featuremapping :: VariationTree 1 f -> VINode 1 f -> f
presencecondition :: VariationTree 1 f -> VINode 1 £ -> £

Nodes of type artifact and mapping are the basic types which we al-
ways require in variation trees. We thus require a label set type 1 to offer
functions makeArtifactLabel and makeMappingLabel to create labels for
artifact and mapping nodes from a reference to an artifact or a logical
formula f respectively. We may create a label for an artifact node from
an ArtifactReference, which we plainly set to string here (e.g., a file
name, function name, or any other way to reference an artifact) but could
be changed later. The makeMappinglabel function creates a label for a
mapping node from a formula f. Therefore, f must to be Composable (i.e.,
support conjunctions A) to be able to define feature mappings and presence
conditions.” We make this requirement explicit using the type class constraint
(Composable f). Lastly, the feature mappings and presence condition of a
node in a variation tree with the given label set type 1 have to be available
via the functions featuremapping and presencecondition.

An example for a possible set of label types 1 was presented in our paper
with the node type set {artifact,mapping, else}. The implementation of
our VTLabel type class is given by the functions F and PC in equations 1 and
2 in the paper, respectively. We give another example for the minimal node
type set {mapping,artifact} here. Therefore, we use generalized algebraic
datatypes (GADTs) as they allow us to add type class constraints to each
constructor:

{-# LANGUAGE GADTs #-}

data MinimalLabels f where
Artifact :: ArtifactReference -> MinimalLabels f
Mapping :: (Composable f) => f -> MinimalLabels f

The type MinimalLabels f only allows for labels Artifact and Mapping.
For Mapping nodes, we require the used logic £ to be Composable as required

“For those not familiar with Haskell: We can make requirements on the argument types
of functions explicit using the => operator. For example, a function foo :: (Composable
f) => f -> [f] is a function £ -> [f] that is only defined for types £ that are instances
of the Composable type class. In Java, such a requirement would be expressed using
extends in declaration of generic arguments. For example, an equivalent declaration of
foo in Java would be <f extends Composable<f>> List<f> foo(f x) { ... }.

-

10

11

12

-

N

w

&)

o

©

by VTLabel type class definition. The instance for VTLabel is the same as
for the node type set {artifact, mapping, else} presented in our paper but
without else and translated to Haskell here:

import Data.Maybe (fromJust)

instance VTLabel MinimalLabels where
makeArtifactLabel = Artifact
makeMappinglabel = Mapping

featuremapping tree node@(VINode _ label) = case label of
Artifact _ -> fromJust $ featureMappingOfParent tree node
Mapping f -> £

presencecondition tree node@(VINode _ label) = case label of
Artifact _ -> parentPC
Mapping f -> land [f, parentPC]
where

parentPC = fromJust $ presenceConditionOfParent tree node

To obtain the feature mapping and presence condition of the parent node,’
we make use of the following helper functions:

ofParent :: (VINode t f -> f) -> VariationTree t f -> VINode t f -> Maybe f
ofParent property tree node = property <$> parent tree node

featureMappingOfParent :: VTLabel t =>
VariationTree t £ -> VINode t f -> Maybe £
featureMappingOfParent tree = ofParent (featuremapping tree) tree

presenceConditionOfParent :: VTLabel t =>
VariationTree t f -> VTNode t f -> Maybe f
presenceConditionOfParent tree = ofParent (presencecondition tree) tree

The function ofParent returns a formula f from the parent of a given node
in a tree, where the formula is extracted using the given property function.
Both featureMappingOfParent and presenceConditionOfParent make

For those not familiar with Haskell: The operator name@pattern enables pattern
matching on a value pattern while referring to the whole value as name. In particular,
node@(VINode _ label) matches all nodes, such that we can access the node’s label (as
if we wrote just (VINode _ label) in the first place without using @), but allows us at the
same time to refer to the whole node by the name node.

-

N

W N e

use of ofParent to retrieve the featuremapping or presencecondition
respectively.

Finally, we define the root of variation trees. As we fixed the root r to
have type 7(r) = mapping and label (r) = true, we introduce a constant for
it, such that it is the same for all VariationTrees:

root :: (HasNeutral f, Composable f, VTLabel 1) => VINode 1 f
root = VINode O (makeMappingLabel ltrue)

To create the root, we require our logic £ to have a neutral element 1true
such that we can fix its formula to [(r) = true. Because the root is a
node of type mapping, we have to create a respective label for it using the
makeMappingLabel function that requires the used logic £ to be Composable.
Moreover, the function makeMappingLabel is only defined for labels, so we
have to require that the given label type 1 is indeed a valid set of labels
VTLabel. We fix the UUID of the root to O.

1.3 Variation Diffs

We now formulate variation diffs as an extension of variation trees in Haskell.
Let us again first recall their original definition:

Definition 3.1 (Variation Diff). A variation diff is a rooted directed
connected acyclic graph D = (V, E,r,7,1,A) with nodes V, edges E C
V x V, root node r € V, node types 7, node labels [, and a function
A:VUE — {+, ,e} that defines if a node or edge was added +, removed
, or unchanged e, such that project(D,t) is a variation tree for all times
te{h,a}.

To reason about variation diffs, and in particular the variation trees
before and after the edit, we introduced the time ¢ € {/),a} in our paper.
Moreover, we also defined a function exists that checks whether an element
with a diff type from {+, ,e} exists at a certain time ¢ € {/),a}. We thus
translate these definitions to Haskell:

data Time = BEFORE | AFTER
deriving (Eq, Show)

data DiffType = ADD | REM | NON
deriving (Eq, Show)

existsAtTime :: Time -> DiffType -> Bool
existsAtTime BEFORE ADD = False

10

7 existsAtTime AFTER REM = False
g8 existsAtTime _ _ = True

Analogous to our definition, we can introduce variation diffs as the data
type VariationDiff 1 f that is defined the same as a VariationTree but
additionally has the function Delta 1 f that assigns a DiffType to each
node and edge:

-

type Delta 1 f = Either (VINode 1 f) (VTEdge 1 f) -> DiffType
2 data VariationDiff 1 f = VariationDiff [VINode 1 f] [VTEdge 1 f] (Delta 1 f)

In order to be able to pass both VINodes and VTEdges as arguments to
a function of type Delta 1 f, we set its domain to Either (VINode 1 f)
(VTEdge 1 f) which means that any value passed to the function must either
be a VTNode 1 f or a VTEdge 1 f (realised in the paper by a set union U).

As described in our paper, every variation diff is designed to describe
exactly two variation trees: The variation tree that existed before the edit
and the variation tree after the edit. In our paper and in this appendix, we
refer to these variation trees as the projections of a variation diff. We may
obtain the projection a given variation diff at a certain time ¢ € {1, a} with
the following function:

-

project :: Time -> VariationDiff 1 f -> VariationTree 1 f

N

project t (VariationDiff nodes edges delta) = VariationTree
3 (filter (existsAtTime t . delta . Left) mnodes)
a (filter (existsAtTime t . delta . Right) edges)

The function project takes a VariationDiff and returns a VariationTree
with exactly those nodes and edges from the diff that exist at time t.
Therefore, we use the function filter that takes a predicate and a list
and returns a list that contains all elements for which the given predicate
evaluates to true. Here, we check that a given node or edge existsAtTime
t which we do by obtaining its diff type via delta. Since delta does not
take a node or edge as input directly, but an Either, we have to wrap the
given node or edge first using the respective constructors Left and Right.”

SFor those not familiar with Haskell: The data type data Either a b = Left a |
Right b describes a generic sum type that may inhabit exactly one of two values (sim-
ilar as for PropositionalFormula we saw earlier). A value of Either a b is either a
Left a storing a value of type a or Right b storing a value of type b. There are mul-

11

-

1.4 Extension: Elif Directives

We now show that we can extend variation trees to also support #elif
directives. While in principle, an #elif can be expressed as a mapping node
below an else node, inspecting #elif directives explicitly may be desirable
for increased granularity. In fact, we also include the node type elif in
our tool DiffDetective for our validation. We thus introduce a new node
type set called WithElif which includes the new node type elif next to
artifact, mapping, and else nodes:

data WithElif f where
Artifact :: ArtifactReference -> WithElif £
Mapping :: Composable f => f -> WithElif £
Else :: (Composable f, Negatable f) => WithElif f
Elif :: (Composable f, Negatable f) => f -> WithElif f

The labels Artifact and Mapping are defined the very same as for our
MinimalLabels introduced earlier: We may construct an Artifact label
from an ArtifactReference, and we may construct a Mapping label from a
Composable formula f. As in our paper, Else labels do not hold any value
but we require the used logic £ to be Composable and Negatable to be able
to define feature mappings and presence conditions of Else nodes. The same
requirements arise for E1if labels but in contrast to Else labels, an E1if
also stores a formula just as Mapping does.

We can now define feature mappings and presence conditions for this new
label set by showing that WithE1if is an instance of VTLabel:

instance VTLabel WithElif where
makeArtifactLabel = Artifact
makeMappinglLabel = Mapping

featuremapping tree node@(VINode _ label) = case label of
Artifact _ -> fromJust $ featureMappingOfParent tree node
Mapping f -> £
Else -> notTheOtherBranches tree node
Elif f -> land [f, notTheOtherBranches tree node]

tiple ways to construct such a sum type in object-oriented languages. One way (in
Java) is to create an interface interface Either<A, B> {} with two possible implemen-
tations class Left<A, B> implements Either<A, B> { A a; } and class Right<A, B>
implements Either<A, B> { B b; }.

12

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

1

presencecondition tree node@(VTNode _ label) = case label of

Artifact _ -> parentPC

Mapping f -> land [f, parentPC]

Else -> 1land [
featuremapping tree node,
presencecondition tree (getParent (correspondingIf tree node))
]

Elif _ -> land [
featuremapping tree node,
presencecondition tree (getParent (correspondingIf tree node))
]

where
parentPC = fromJust $ presenceConditionOfParent tree node
getParent = fromJust . parent tree

notTheOtherBranches :: (Composable f, Negatable f) =>
VariationTree WithElif f -> VTNode WithElif f -> f
notTheOtherBranches tree node = land $ lnot <$> branchesAbove tree node

branchesAbove :: VariationTree WithElif f -> VTNode WithElif f -> [f]

branchesAbove tree node = branches tree (fromJust (parent tree node))

branches :: VariationTree WithElif f -> VTNode WithElif f -> [f]
branches _ (VINode _ (Mapping f)) = [f]
branches tree node@(VTNode (E1lif f)) = f : branchesAbove tree node

branches tree node = branchesAbove tree node

correspondingIf :: VariationTree WithElif f ->
VINode WithElif f ->
VINode WithElif f
correspondingIf _ fi@(VINode _ (Mapping _)) = fi
correspondingIf tree node =
correspondinglf tree . fromJust $ parent tree node

The feature mapping and presence condition of Artifact and Mapping
nodes are defined the very same as for our MinimalLabels and as in the
paper. The feature mapping and presence condition of Else nodes are
more complicated than in our definitions in the paper that are valid for the
node type set {artifact,mapping,else}. The key difference is, that the
extension by elif nodes now enables chains of elif and else branches, as

in the following example:

#if A

13

2

3

6

7

8

foo();
#elif B
bar();
#elif C
baz();
#else
1010);
#endif

Thus, when determining feature mappings and presence copnditions for Else
and E1if nodes, we have to consider all other branches above the current
node in a potential chain. To do so, we use several helper functions:

notTheOtherBranches retrieves the formulas of all branches above a given
node with branchesAbove tree node, then negates all formulas using
1not <$>7 and finally conjuncts all negated formulas via land. Thus,
notTheOtherBranches returns the condition that has to be satisfied
in order to reach a given node in a chain. For example, for #elif C in
the above example, notTheOtherBranches would return —A A —B.

branchesAbove returns the formulas of all branches in a chain that are
above a given node by invoking branches on the parent of the given
node. For example, (in pseudo code) branchesAbove (#elif C) =
branches (parent of #elif C) = [A, BI].

branches returns all branches in a chain starting from a given node. The
chain ends at the first Mapping node when traversing the chain upwards,
thus branches just returns the formula of the mapping in this case.
If branches finds an E1if instead, it returns a list consisting of its
formula f together with all formulas above the elif in the chain.
Artifact nodes are skipped (third case).

correspondingIf returns the mapping node at the top of a chain by travers-
ing the tree upwards from a given node until it finds the mapping and
returns that mapping.

With these helper functions, we then define featuremapping and presence-
condition for Else and E1if nodes.

The feature mapping of an Else node is the conjunction of the negation
of the conditions of all the other branches because the code in an else branch
is included if and only if every branch above the else evaluates to false (i.e.,

Tf <$> x is syntactic sugar for fmap f x.

14

its negation evaluates to true). The same applies for E1if nodes except that
an E1if comes with its own condition £. The feature mapping of an E1if
is thus also given by notTheOtherBranches tree node but in conjunction
with its own formula £.

The presence condition is defined the same for Else and E1if nodes
except that their individual feature mappings are different. The presence
condition of an Else or E1if node is a conjunction of (1) its own feature
mapping and (2) the presence condition of any outer annotations. The reason
is that the own feature mapping (1) handles all nodes in the current if-elif-
else chain but this chain might be nested again in other outer annotations
(2). These outer annotation are above the correspondingIf of the current
chain, and thus we obtain the presencecondition of the parent of the
correspondingIf.

While else and elif statements belong to the basic elements of most
programming languages, their formal evaluation is intricate as shown above.
In fact, else and elif help developers by shifting some complexity from
program specification (i.e., development) to program evaluation (i.e., com-
pilation or interpretation). Thus, the definition of featuremapping and
presencecondition is much more complex for the node type set {artifact,
mapping, else,elif} (i.e., WithElse) than for {artifact,mapping,else}
(defined in our paper). This is the reason why we decided to discuss elif
statements in the appendix rather than the actual paper.

15

2 Proofs

In this section, we provide the full proofs for the completeness of variation
diffs and for the completeness and unambiguity of our catalog of edit classes.
The proofs for completeness and unambiguity are based on a proof scheme
each, which can be reused to prove the respective property for other, custom
catalogs of edit classes.

2.1 Completeness of Variation Diffs

In this section, we prove the completeness of variation diffs as a model for
edits to variation trees. Therefore, we use our Haskell definitions introduced
in the previous section.

Theorem 1. Variation diffs are complete regarding variation trees, meaning
that the difference between any two variation trees can be described in terms
of a variation diff.

To prove Theorem 1, we have to show that we can construct a variation
diff d for any two variation trees t and u, such that

project BEFORE d == t
and
project AFTER d == u.

By definition of variation diffs, these two laws have to be satisfied. These
laws can be seen as axiomatic requirements to any diffing technique: Any
diffing technique should describe the difference between two states of a
data structure such that we can retrieve both states of the data structure.
This ensures that the produced diff d holds enough information to actually
represent all differences between both states.®

8Sometimes, diffs are condensed meaning that they only describe a local change to a
data structure without storing the entire old state t. For example, uniz diffs of an edited
text file (e.g., a git diff) usually show just the changed lines surrounded by additional
unchanged lines that serve as context to locate the change in the old state of the text file
(cf. Listing 2 in our paper). Similarly, also variation diffs may be condensed and in fact
we condense variation diffs in our tool DiffDetective for our validation by removing all
non-edited subtrees. When diffs are condensed, the project function also has to take the
old state t of the diffed data structure as input as one can neither construct the old state t
nor the new state u from just a condensed diff. In this case the first law project BEFORE
d t == t is trivially satisfied for any kind of diffed data structure because we could define
project to just return t when the given time is BEFORE. Projecting the diff d to the new

16

-

N

'S

10

11

12

13

14

Proof of Completeness. To prove completeness of variation diffs, we
have to show that given any two variation trees t and u, there exists at least
one variation diff d that satisfies the above requirements. To find one such
variation diff, we provide a diffing function that takes two variation trees and
describes their differences in terms of a variation diff. As argued in our paper,
there are many possible ways to construct diffs, so we define the simplest
possible diffing function we could think of and refer to it as naiveDiff.

We assume that the UUIDs of the nodes in both input trees to naiveDiff
are unique (i.e., there are no two nodes with the same UUID across both
trees). Otherwise we would have to create a matching of the input trees
first and create new UUIDs out of the matching, which would unnecessarily
complicate the proof. We thus assume all given UUIDs to be unique already
which does not limit the validity of our proof because the given trees are
finite and thus there exists a numeration of the nodes such that all nodes
have unique UUIDs. Without loss of generality, let the UUID of the root be 0
(cf. Section 1.2).

Our naiveDiff creates a variation diff that marks all nodes and edges of
the old tree as and all nodes and edges of the new tree as added,
except for the root that remains unchanged:

{-# LANGUAGE LambdaCase #-}

naiveDiff :: (HasNeutral f, Composable f, VTLabel 1) =>
VariationTree 1 f -> VariationTree 1 f -> VariationDiff 1 f
naiveDiff
(VariationTree nodesBefore edgesBefore)
(VariationTree nodesAfter edgesAfter)

VariationDiff
(root : nodesWithoutRoot (nodesBefore <> nodesAfter))
(edgesBefore <> edgesAfter)
delta
where
nodesWithoutRoot nodes = [n | n <- nodes, n /= root]
delta = \case

state becomes harder because the diff d has to be applied to / embedded into the old state
t to yield the new state u. Here, we do not respect condensed diffs explicitly as they can
be seen as an extension to full diffs that store the entire old state. This does not limit the
validity of our proof for completeness as (1) we show that there always exists a valid full
diff for two variation trees, and (2) condensed diffs can be and usually are constructed
from condensing a full diff. Thus, by showing that variation diffs are complete as full diffs,
also their condensed diffs are complete.

17

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Left node ->

if node == root then
NON

else if node “elem” nodesBefore then
REM

else if node “elem” nodesAfter then
ADD

else

error "Given node is not part of variation diff!"
Right edge ->
if edge “elem” edgesBefore then
REM
else if edge “elem” edgesAfter then
ADD
else
error "Given edge is not part of variation diff!"

For two given variation trees

VariationTree nodesBefore edgesBefore
and

VariationTree nodesAfter edgesAfter

naiveDiff creates a VariationDiff with all nodes from both input trees
nodesBefore <> nodesAfter” but with only a single root below which both
trees are inserted. Thus, naiveDiff removes the roots from both input node
sets via nodesWithoutRoot but reinserts the root at the beginning of the
VariationDiff’s node set. The resulting VariationDiff contains exactly
the edges from both input trees. Finally, the produced VariationDiff is
equipped with the function delta which is defined to flag (1) the root as
unchanged NON, (2) all old nodes and edges as removed REM and (3) all new
nodes and edges as inserted ADD. The function delta is undefined for nodes
or edges that were not part of the original variation trees, thus issuing an
error for those elements.

To prove the completeness of variation diffs, we show that a variation
diff created with naiveDiff is a valid variation diff by showing that its
projections are indeed the initial two variation trees. Let t and u be any two
variation trees of the same type (i.e., using the same logic £ and the same
label type 1):

9<> concatenates two lists (or more generally: composes two monoidal values).

18

N

-

10

11

12

13

14

15

16

17

18

19

20

t :: VariationTree 1 £

ct
]

VariationTree nodesBefore edgesBefore

u :: VariationTree 1 f

VariationTree nodesAfter edgesAfter

We show that the following two equalities hold:

project BEFORE (naiveDiff t u) ==t
project AFTER (naiveDiff t u) == u

We start by proving the first equality using equational reasoning (i.e., we
substitute the definitions of our functions). We describe our proof steps in

comments (preceded by --).1°

project BEFORE (naiveDiff t u)
-- Substitute t and u
== project BEFORE (naiveDiff
(VariationTree nodesBefore edgesBefore)
(VariationTree nodesAfter edgesAfter))
-— Substitute naiveDiff
== project BEFORE (VariationDiff
(root : nodesWithoutRoot (nodesBefore <> nodesAfter))
(edgesBefore <> edgesAfter)
delta) -- defined exactly as in the definition for naiveDiff
—-- Substitute project
== VariationTree
(filter
(existsAtTime BEFORE . delta . Left)
(root : nodesWithoutRoot (nodesBefore <> nodesAfter))

)

(filter
(existsAtTime BEFORE . delta . Right)
(edgesBefore <> edgesAfter)

)

By definition of delta we know that

Ve ‘elem‘ edgesBefore: delta (Right e) == REM

ONote that the proof is not a valid Haskell program but uses our Haskell definitions.

19

© o ~N o

10

11

12

13

and that
Ve ‘elem‘ edgesAfter: delta (Right e) == ADD.

By definition of existsAtTime we know that existsAtTime BEFORE x is
true iff x /= ADD. Thus, exactly the edges in edgesBefore exist at time
BEFORE. We get:

== VariationTree
(filter
(existsAtTime BEFORE . delta . Left)
(root : nodesWithoutRoot (nodesBefore <> nodesAfter))
)
edgesBefore
-- Substitute nodesWithoutRoot
== VariationTree
(filter
(existsAtTime BEFORE . delta . Left)
(root : [n | n <- (nodesBefore <> nodesAfter), n /= root])
)

edgesBefore

By definition of delta we know that
Vn ‘elem‘ nodesBefore: delta (Left n) == REM
and
Vn ‘elem‘ nodesAfter: delta (Left n) == ADD
and
delta (Left root) = NON.

By definition of existsAtTime we know that existsAtTime BEFORE x is
true iff x /= ADD. Thus, all nodes in nodesBefore and the root exist at
time BEFORE but not the nodes in nodesAfter. We get:

== VariationTree
(root : [n | n <- nodesBefore, n /= root])
edgesBefore

-- Assuming that

- root == head nodesBefore,

-- or assuming that

20

®

©

10

11

12

- nodesBefore is a set and not a list,
-- we get:
== VariationTree

nodesBefore

edgesBefore

The other proof for project AFTER (naiveDiff t u) == u is analogous.
We have to replace all occurrences of BEFORE in the equations and reasoning
by AFTER to retrieve the dual sets nodesAfter and edgesAfter, and finally
the second variation tree u. O

2.2 Proofs for Edit Classes

In this section, we prove that our catalog of edit classes is complete (i.e.,
every artifact node is in at least one class) and unambiguous (i.e., every
artifact node is in at most one class). This means that every artifact
node is in exactly one class.

For each proof, we first introduce a proof scheme that captures the proof’s
idea and structure. The purpose of the scheme is to provide instructions on
how to prove the property of interest for any (valid) set of edit classes, not
just the one we propose in our paper. Thus, each scheme is parameterized in
a set of edit classes.

We then employ the introduced scheme to prove that our catalog of edit
classes satisfies the respective property. The proof thereby also serves as an
example on how to use the proof scheme, which is useful when building other
edit class catalogs.

2.2.1 Completeness of Edit Classes

Theorem 2. Fvery node in a variation diff with node type artifact is
classified by at least one edit class.

Proof Scheme. Let P be the set of edit class definitions which we want
to prove to be complete, where each class’ definition p € P is a predicate
over an artifact node in a variation diff. To prove the completeness of P, we
have to show that for all artifact nodes ¢, at least one predicate evaluates to
true. We thus disjunct all predicates p € P because a disjunction evaluates
to true if at least one of its clauses evaluates to true. We can thus prove the

21

completeness of P by proving that the following formula is a tautology:

Ve. \/ p(c).

peP

Verifying that this formula is a tautology can be done in multiple ways.
Using equational reasoning, we could show that this formula simplifies to
true. Another way is using a SAT solver because a formula ¢ is a tautology
iff its negation is unsatisfiable (i.e., 7SAT(—¢)). When using a SAT solver,
references to the variable ¢ may have to be replaced by a boolean constant.

Proof. Following our proof scheme, we prove the completeness of our edit
class catalog by showing that

Ve. \/ p(c)

peEP

is a tautology by equational reasoning. Let ¢ be any artifact node from a
variation diff. Let P be the set of predicates defining the edit class catalog
proposed in our paper:

P = {AddWithMapping, AddToPC,
RemWithMapping, RemFromPC,
Specialization, Generalization,

Reconfiguration, Refactoring, Untouched}.

We get:

\/ ple)

pEP
= AddWithMapping(c)
VAddToPC(c)
V Rem WithMapping(c)
V RemFromPC(c)
V Specialization(c)
V Generalization(c)
V Reconfiguration(c)
V Refactoring(c)
V Untouched(c)

22

(added(e) A added(M,(c
V(added(e) A madded(M, (e
((c) A
(
(

< <

(c) A=
V(unchanged(c) A =
V(unchanged(c) A
V(unchanged(c) A =
V(unchanged(c) A
V(unchanged(c) A
vdded(c) A (addec
(©) A (oo M (6) v (M ()

V(unche Lnbed(A

\

added(c) A true)
(c) A true)

<

V(unchanged(c)A

(=(PC (e
v ((c
(PC (e
(PC (¢

added(c) v
V(unchanged(c) A true)

V
V

(
(
(
(-
(
(-
(
Y
(
(
(
(-
(
-
(

) a(¢)
) 2(¢)
) E PC.(c)
) 2(€)

(

= added(c) vV (¢) V unchanged(c)
= true
because exactly one clause of added(c), (¢), and unchanged(c) eval-

uates to true while the others evaluate to false (because the the type of
change made to ¢ is given by A(c) which is exactly one value of {+, ,e}). O

23

2.2.2 Unambiguity of Edit Classes

Theorem 3. Fvery node in a variation diff with node type artifact is
classified by at most one class.

Proof Scheme Let P be the set of edit class definitions which we want to
prove to be unambiguous, where each class’ definition p € P is a predicate
over an artifact node in a variation diff. To prove the unambiguity of P, we
have to show that for all artifact nodes ¢, at most one predicate evaluates to
true. This means, that all predicates are alternative to each other; when a
predicate p evaluates to true, all other predicates ¢ must yield false:

VeNp,q € Pp # q.p(c) = —q(c).

Another, equivalent interpretation of this formula is, that for any disjunct pair
of predicates p, ¢, not both predicates can evaluate to true simultaneously.

VeNp,q € P,p # q.=(p(c) A q(c)).

By showing that either formula is a tautology, we prove that P is unambigu-
ous.

Proof. Following our proof scheme, we prove the unambiguity of our edit
class catalog by showing that

VeVp,q € P,p # q.=(p(c) A q(c)).

is a tautology. Let ¢ be any artifact node from a variation diff. Let P be the
edit class catalog proposed in our paper:

P = {AddWithMapping, AddToPC,
Rem WithMapping, RemFromPC,
Specialization, Generalization,

Reconfiguration, Refactoring, Untouched}

Each of our classes p € P, by definition, is a conjunction of (sub-)predicates
Sy (ie., p = Ases, s(c)). For example, AddWithMapping is a conjunction
of the two (sub-)predicates added(c) and added(M,(c)). This means, each
class can only evaluate to true if all its (sub-)predicates S, evaluate to true.

24

Given any two classes p,q € P, we see that there is always at least one
(sub-)predicate ¢ € S, with ¢ |= -« and k € S;. (Note, that the three
predicates added(c), (¢), and unchanged(c) are alternative to each
other by definition.) Thus, each class contains at least one (sub-)predicate
that will become false when another class evaluates to true. Thus, no two
disjunct classes can evaluate to true simultaneously. O

25

3 Composite Edits

In this section, we show that edit operators and patterns defined in related
work Al-Hajjaji et al. [2016], Stanciulescu et al. [2016] are either (1) a subset
of or equivalent to one of our edit classes, or (2) indeed a composition of
instances of our edit classes and thus a composite edit. For each operator
or pattern from related work, we show its definition or example from the
original paper together with the corresponding variation diff (which is not
part of the original paper but constructed by us). In the variation diff, we
label artifact nodes directly with their corresponding edit class (as each
artifact node is classified by exactly one class). In this sense, we provide
a visual proof that the corresponding pattern (or at least an example of it)
from related work is equivalent to one of our classes or that it is a composite
edit.

3.1 Al-Hajjaji et al. [2016]

Al-Hajjaji et al. provide a set of mutation operators to preprocessor-based
variability. We consider all edits to source code and preprocessor directives
here but not those to the variability model. Al-Hajjaji et al. define all
operators in terms of a natural language description and a generic example.
Each example is given as a state before and a state after the edit but not
as a unix diff as we do in our paper. For comparability, we translate each
example to a unix diff here. A further discussion and comparison to our
work is part of the related work section of our paper.

3.1.1 Feature Dependency Operators

Al-Hajjaji et al. distinguish edits to source code from edits to macro def-
initions (that may describe dependencies between features). The feature
dependency operators describe changes to the feature mapping of #define
statements to conditionally activate or deactivate other features. Both op-
erators correspond to classes of our catalog. While, we do not distinguish
between #define directives and pure source code in artifact nodes for our
edit classes, such a differentiation is still possible when inspecting the label
of artifact nodes.

26

RCFD — Remove Conditional Feature Definition

RCFD

#ifdef featurel

-#tdefine featureB R] (oo R < >
#define featureB | #ifdef featureA’
#endif - -

ACFD — Add Condition to Feature Definition

ACFD

@
mapping |
#ifdef featureB

-

+#ifdef featureB
#define featureA
+#endif

Specialization
#define featureA’

3.1.2 Variability-Mapping Operators

The variability-mapping operators by Al-Hajjaji et al. [2016] describe edits
the preprocessor directives that describe feature mappings. All operators
correspond to edit classes from our catalog.

27

AICC — Adding ifdef Condition around Code

A

“mapping |
+#ifdef featureA -

function(int var)
+#endif

AFIC — Adding Feature to ifdef Condition

-#if defined(featurel)

+#if defined(featureA) && defined(featureB)
function(int var);

#endif

AFIC

mapping
#if defined(featureA)

(mapping
#if defined(featureA) && defined(featureB)
-

[Specialization
function(int var);

RIDC — Removing ifdef Condition

mapping |
. #ifdef featureA’
-#ifdef featureA -y

function(int var);
—-#endif

28

AlCC

[Specialization
function(int var)

RIDC

[Generalization
function(int var);

RFIC — Removing Feature of ifdef Condition

-#if defined(featured) && defined(featureB)
+#if defined(featurel)

function(int var);

#endif

RFIC

mapping
| #if defined(featureA) && defined(featureB)

Generalization
function(int var);

I mapping
#if defined(featureA)

RIND — Replacing ifdef Directive with ifndef Directive

RIND
#ifdef fe intg A‘

) ifdef feature
-#ifdef featurel —
+#ifndef featurelA

function (int Var) ; Reconfiguration
#endlf function(int var);|
mapping

#ifndef featureA‘

29

RNID — Replacing ifndef Directive

+#ifdef featurel
-#ifndef featureA
function(int var);
#endif

3.1.3 Domain Artifact Operators

with ifdef Directive

RNID

mapping
#ifdef featureA|

Reconfiguration
function(int var);

N mapping
#ifndef featureA|

The domain artifact operators describe changes to source code.

CACO — Conditionally Applying Conventional Operator

CACO applies conventional source code mutation operators in a variability-
aware way. It modifies source code that has a certain presence condition. In
a diff, such a modification occurs as the removal and insertion of source code
and thus CACO is a composite edit built from a RemFromPC and AddToPC

class application.

#if defined(featureld) && defined(featureB)

-char array[5]
+char array[4]
#endif

CACO

AR
mapping [“AddToPC

#if defined(featureA) && defined(featureB) |char array[4]
N -

RemFromPC
char array[5]

30

RCIB — Removing Complete ifdef Block

RCIB

-#ifdef featurel

-function(int var) g [@
function(int var) #ifdef featureA’
—#tendif - -

MCIB — Moving Code around ifdef Blocks

MCIB moves code around an #ifdef block. As discussed in the discussion
section for our edit classes in the paper, describing moves in terms of unix
diffs is ambiguous: It is subject to the differ’s (or developer’s) choice to
consider the code or the preprocessor directives as moved, as both can be
the case. Here, we show the move of source code as envisioned by Al-Hajjaji

et al..
MCIB

3 N\
—-int *var=Null; Untouched
#ifdef featurel i:f‘TVZ’r‘LT«Z?..
3
e mapping |
. #ifdef featureA™ |
#endif p 7
int * Null int vt
+1in var=Null; int *var=Null;
’ Untouched
.

3.1.4 Conclusion

As described in our paper, the operators by Al-Hajjaji et al. are similar to our
classes. Yet, the operators are incomplete, as for example Add WithMapping
and thus a non-empty subset of edits is missing. On the other hand, the
operators distinguish more cases for single classes, for example if a #define
directive or source code was specialized. Our catalog of classes could be
extended by distinguishing such sub-cases for different classes in the future

31

Untouched

&

(in particular, by adding further clauses to the definitions of classes), while
remaining complete.
3.2 Stanciulescu et al. [2016]

Stanciulescu et al. provide a set of edit patterns for edits to variability in
source code, yet without being complete and facing overlap and ambiguity.
A discussion and comparison to our work is part of the related work section
of our paper.

3.2.1 Code-Adding Patterns
P1 AddIfdef

P1 AddIfdef

+ #ifdef ULTRA_LCD

+ lcd_setalertstatuspgm(lcd_msg) —saftmm [@
- - setalertstatuspgm(icd_msg); #ifdef ULTRA.
+ #endif -

P2 AddIfdef*

AddIfdef* is the repeated application of the AddIfdef pattern (two or more
times). Thus, AddIfdef* is a composite edit pattern, built from two or more
AddWithMapping instances. We show an example with three consecutive
applications of the AddIfdef pattern:

32

+ #ifdef A

P2 AddIfdefStar

+ a
+ #endif
C
* #ifdef B g
+ b
: M (mapping|
+ #endif AddWithMapping |- | #ifdef B
b - mapping
B A #ifdef A
"Aﬁw.thMapping‘
1 a
+ #ifdef C
+ cC
+ #endif

P3 AddIfdefElse

P3 AddIfdefElse

+ #ifdef ULTRA_LCD

+ lcd_setalertstatuspgm(lcd_msg) .

+ #else oo | e
| #ifdef ULTRA alertstatuspgm(msg);

+ alertstatuspgm(msg); - -

+ #endif .

setalertstatuspgm(lcd_msg);

P4 AddIfdefWrapElse

P4 AddifdefWrapElse

+ #ifdef ULTRA_LCD

+ 1lcd_setalertstatuspgm(lcd_msg) .

* #else et]| o v P
alertstatuspgm(msg) ; - - ~

+

#endif .
cise]

P5 AddIfdefWrapThen

33

P5 AddIfdefWrapThen

+ #ifdef ULTRA LCD

lcd_setalertstatuspgm(lcd_msg) .

+ #else mapping AddWithMapping
#ifdef ULTRA alertstatuspgm(msg);

+ alertstatuspgm(msg) ; - -

+ #endif

Specialization
setalertstatuspgm(lcd_msg);

P6 AddNormalCode

This pattern is explained without an example and described in natural
language. AddNormalCode describes the insertion of source code within
another presence condition, which can also be true. We constructed the
following example from its natural language description (and the example
that was given by Stanciulescu et al. for the dual RemNormalCode pattern).
This pattern corresponds to our AddToPC class.

P6 AddNormalCode

#ifdef ULTRA_LCD
+ lcd_setalertstatuspgm(lcd_msg: _ —~
alertstatuspgm(msg) ; #Wm'ﬁ
#endif

msg)

AddToPC
d_setalertstatuspgm(lcd_msg);

P7 AddAnnotation

This pattern matches fixes to syntactically incorrect annotations by insertion
of #ifdef or #endif directives, and whitespace changes. This pattern is
neither supported by DiffDetective nor the variation control system by
Stanciulescu et al..

3.2.2 Code-Removing Patterns
P8 RemNormalCode

34

P8 RemNormalCode

#ifdef ULTRA_LCD

- lcd_setalertstatuspgm(lcd_msg, _ .
alertstatuspgm(msg) ; *@“’* ~ “"G“S@“m"
#endif

RemFromPC
d_setalertstatuspgm(lcd_msg);

P9 Remlfdef

This pattern has two cases and thus actually describes two patterns. RemlIfdef
matches the removal of source code with its surrounding #ifdef and #else

annotations
P9 Remlfdef WithElse

#ifdef ULTRA_LCD
- lcd_setalertstatuspgm(lcd_msg)

— #else mapping ‘ [RemWithMapping
| #ifdef ULTRA] alertstatuspgm(msg);
_ . . -
alertstatuspgm(msg) ;
- #endif

RemWithMapping
setalertstatuspgm(lcd_msag);

or without an #else annotation:
P9 Remlfdef WithoutElse

- #ifdef ULTRA_LCD
- lcd_setalertstatuspgm(lcd_msg) renfimosong

A A
] [mapping |
setalertstatuspgm(lcd_msg); #ifdef ULTRA
- #endif - -

P10 RemAnnotation

35

This pattern matches fixes to syntactically incorrect annotations by removal
of #ifdef or #endif directives. This pattern is neither supported by our
catalog of edit classes nor the variation control system by Stanciulescu et al..

3.2.3 Other Patterns
P11 WrapCode

mapping

+ #ifdef ULTRA_LCD Leiserucma

lcd_setalertstatuspgm(lcd_msg.
+ #endif

P12 UnwrapCode

- #ifdef ULTRA_LCD ; #WRAJ
lcd_setalertstatuspgm(lcd_msg.
- #endif

P13 ChangePC

36

P11 WrapCode

Specialization
Icd_setalertstatuspgm(lcd_msg);

P12 UnwrapCode

Generalization]
lcd_setalertstatuspgm(lcd_msg);

()

©

P13 ChangePC

mapping
#ifdef ULTRA,

- #ifdef ULTRA_LCD

+ #if ULTRALCD && ULTIPANEL @

lcd_setalertstatuspgm(lcd_msg,
#endif

/X
Reconfiguration
setalertstatuspgm(lcd_msg);

mapping
#if ULTRALCD && ULTIPANEL,

P14 MoveElse

P14 MoveElse

#ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg.

- #else N\

Untouched
| Icd_setalertstatuspgm(icd_msg);|

Refactoring

alertstatuspgm(msg) ; cleanup(msg;
+ #else

mapping
| #ifdef ULTRA

cleanup (msg) ;
#endif

[Reconfiguration |
alertstatuspgm(msg);

3.2.4 Conclusion

As described in our paper, the patterns by Stanciulescu et al. inspired our
work. In particular, we addressed the following three problems of the patterns
by Stanciulescu et al. in our work:

Ambiguity. The patterns lack a formal description and are explained on
the examples presented above. Thus, one has to come up with its own
method for matching these patterns when one wants to re-implement
the detection of the patterns by Stanciulescu et al.. Thereby it is not
clear how some patterns were exactly defined (e.g., if further code
is allowed between some line edits or not such as in WrapCode or
UnwrapCode).

Incompleteness. The patterns by Stanciulescu et al. are incomplete. The
insertion or deletion of just an #else branch is not covered: These

37

operations are explicitly excluded from the AddIfdef and Remlfdef
patterns and no other patterns matches the insertion or deletion of an
#else branch. Such edits are covered in our catalog by AddWithMap-
ping and Rem WithMapping (thus AddIfdef can be seen as a subtype of
AddWithMapping). Elif directives are not explicitly mentioned by Stan-
ciulescu et al.. Moreover, some patterns miss their inverse operation
(AddIfdef*, AddIfdefWrapElse, AddIfdefWrapThen), and Untouched
is missing. Furthermore, Stanciulescu et al. [2016] report that not all
edits the history of Busybox could be classified with their patterns.

Overlap. Edits can be classified by more than one pattern. For example, it
is undefined if an occurrence of AddIfdefWrapElse should be considered
as an application of AddifdefWrapElse or an application of AddIfdef
and WrapCode. With the distinction between classes and composite
edit patterns, we explicitly account for this overlap in our paper.

38

4 Complete Validation Results

For processing Marlin, we used the same settings as Stanciulescu et al. [2016]
to be comparable. This means that we

1. considered only files within the Marlin subdirectory,

2. ignored arduino files,

3. only considered file modifications (as for the other datasets)
4. inspected exactly all files of type c, cpp, h, and pde.

We also accounted for the custom ENABLED and DISABLED macros in Marlin
explicitly where ENABLED acts similar as def ined and DISABLED tests whether
a macro is undefined or set to 0. We did not implement custom treatments
for other datasets.

In the following we present the full validation results for each dataset
both in absolute (Table 1) and in relative values (Table 2).

39

"S)[NSaI 2IN[OSQY :T 9[qel,

sury Swg g ST'8GG'LE | GOT'66 SEV'S6T 6S1°6EC 90L'TPE 908'89L 999'FIE'0C €T9'6£6 80T EI9'CT | SOL'ETV'SY 0T8°006'F TIT'80LT ZI6T64C - 12101
swg SWEE S6'€9€ LPV'E 618'¢€ 986'C 0979 SCT'GT 299°'€9€ L92°T¢ 06T°L6E 8L0'TT8 €9L°TL 296'7T 9812 1ojexdroyur ydraosysod jdrwsisoys
swig swy'g 671 €2 0St 661 iig 98T€C €rg 265°8T GLE€S 9.6 2%0°y 9v€'9 I DU 18811
sug suy el SI'9€T LE9°T €6TT TRLD 80LL P88'9FF Tre'8 E9FFIF £61°766 669°0F 908°¢T 63661 OUIYDRUL [BNIIA jorred
sty swy'g S8°0¢ 0Tt 290'T T96'T 86G'G9 0T8T FE'GL 0Z8°97 T £76°9T 769°¢ 9999 dIBMIJOS FurUIIRISeIp ep
sury SwY'Tg ST'9GL €07’ 9259 T0L'€T 8TVG9E 96T'2E 99C°€6¢ 988°078 POZ'T6T 08F'€C 67€'8E Azeaqy Supururersord oqu3
swg SWOpg 86299 GeT'T TOP'TT TOT0EE SVY'TT PLT'PI9E 65€°0€L 12°TL VGE'LT L60°07 1oBuassour Jue)sut wsprd
sut, Swg0g S§'1S0°C | 91L'6 TLG'0F PET'G8E'T 96€'8G T6SOLY'T | €69°0T0°C 9PS'GLT €179 2€9°L8T 1oj0adaojur urexgoxd dyd
suty swy) SL'9T c01 88¢ £88'0 969 9627T 9vL‘9F 682 0L1°C €68'c TOATOS (M TOATISGIM-DONOTOTD
swg SWy 07 S6'199 TLGT G8F'TT 8ZT0EF O81'¢ GIS'99F 0S6°LT6 £TT°6S FF'8C 96T2TT 10j0rdoyur urersord uoryAdd
SWGHS SW('C6G $9°0 g o€ TEF°T 89 092°T vie'e a8y 1 L woysAs asequyep qpAI-qp-Ad[a1aq
swg swg0g 099 129 86E'TT 677'¢S8 990°CT 8ES€T6 906°008°T 9L9°89T 00L'T€ 9€£8°LY 10y1pa sorqders dung
s s S0°0 0 0 0 0 0 0 jan Areaqu erpout qu-ourx
SWT] Swg9TT 89T 28 907 T GESPT 0926 08¢'T 80T [4ns 10JR[NUD [RUIULIDY ULIO)X
swg swy gl ST'GOL 6v¢ 110°¢ LIR'¥8E LELTYL 81488 $02°9¢ L£0°09 WOYSAS [01YU0D UOISIADT UOISIDAQNS
swg L swg'g S0°0 0 4 iad 78 61 id 6 1031pa sorydes 10300a fyx
swg SWEgT 89'08 €68 £66°'G 9T8TL TL9°09T T9L7T 098’9 99LTT 100y Surord jordnug
sy swg 0L ST'8¢ 182 LE6T 089 T8E9L 1246 087°¢ €er'y TOATOS oM pdyyysy
sup Swg'gr ST'Z8 612'e TET'16T 789'8C 0£€1LT 692°06¢ £Ir'se 29y €GT'L wyshs Furyerado xrupu
s, SWp'gg SE8E LLG [S9ENa PLO'G 98LTHL LPGL8¢ 060G 68661 £96'2¢ IOAIDS (oM pdyy-oyoede
Swpy SWO'eE ST6VE'T | LLL'T [elirarcicd L99°8T 099°TLE 60T TS 1€ 1L £V6°L€ GAT'FGT 1031Pd §x03 SORIID
swog SWE'ZE SRVCT 81T TPE8S 6826 10969 067671 8L6'] L9L'€ (jasq Arexqir TINX gruxqr
sur sur mOG O O O O O O C mNﬁ Nmmb‘rc,?_ £¢>w XENQ
surg Swg 91 S8VIT €E1°T L6L0OLT €EVPT EET'0ST V2L 68 [amng G8VPT LVVLT swaysds pappaquia xoqdsng
swgy SUp"0g. ee 946'¢ 72698 Lv6'eLT £79°ST 8¢€'9 799'8 soseqeyep onbs
swgy swgLg 21g't GOR'OT $S6°T0G ¥8Y'L66 826'6S 169°6 TTr'IL wogsAs Sunperodo stre[osuodo
swoT SWy”LE L1L'G T9T'69 I8L°GIT YOT° L9 TEET8 LO9FT 09261 Sunurd pg urren
swg swg'p POV'T 69€°6C 0PP'9¢ Gop'R 667V 2939 Sromou assqI[
s, swg (L 6EV'T PILST 01228 8LTT v€9°C 8GG°L Toa108 Ax01d Axoard
sug SwO 9L S0'8€ €IL6 EL6'LE 76528 €L9'8 1967 8a1'e uorpeordde £)rmoos udausdo
s, Swg Tyl ST'L89°C T63Tr 6ETE19 GEG'LOTT GPR'LOT L98'ST FP6°0F ouduo oured jopos
swg| SWY°gg S0'€€T TPE'ET 96T LTL'80F T9L°6T 8ST0T VIF'7e prdmur wersord e
swg swrgr S6'PLT 982'0C LE6'CHT 116°92¢ 069°¢S 10771 88L°LT RUSEED'S 10A198-810X
swry SWE T S0°€GE 78 91€'T 189°G 160°€0¢ £9L°98¢ 666'8G 899°GT WITE uoryeordde joayspeaads Howmus
swyg SwyLE S0FVE 672'C ¥60°8 €LLTT PY9'OVT 8V8°10€ GES'6E [ag 79e'eT T0PD X0} wiA
sur— sur— SO0 0 0 0 0 0 0 0 98 u——UMd Jajsuel) [reur [rewrpuss
swg swyQr SL'8T LT L12 68611 49 £76°01 8IL0¢ L62F 0281 289'C LY [reu-o poaydids
swg SwggT S6'628°0T | 6V9'8 LOEFT TF6'CY STFOTL'G G60°GTT GIG'TER'9 | GEO'E8P'TT PIS'GLY'T 627 0.8 109°2L0°T wo)ss Furyerodo xnurp
suig suwg' LT 86607 [izas TP 6ET VTrOT - 68LLGT T£9°'LTE 266°L¢ Toderd erpau uas-g0fedu
sug swg'g S9°L 9 taiatd 908 £99°9¢ TS €LLT DITEAIJOS [EDIjRIIOY yeL oaosdu
swot SUL 9T 88648 SIV'E 208°G18 SISTL Cr9'088 766'2S wosAs oseqeyep [bsoxdysod
sug swgg[7668 QLG GLO'GST GeR'el 10208T 8€6'6C 0014108 £1030011P JVA'T depuado
surrg Sury Ly SG€20°0 POL'TT G6T'8F GPI'FeS'T 0GL°9TF SOF'T6T Sromourery soprduroo 298
swug ST8TV'G 6L5°€L COV'ETCY LST'I9C L69'GIS'T 1€8°6TL L02°2LE woyss Furyerodo psqeey
suig SP°L8 VL9'T 20L'8eT 9¢8'9 STT'LVT 19L°6T 699°0T werdord snaanue Aewe[d
5
& s g 9
bfbvp% : .9001. & /j»wr/z %& o%nv & .@Q& Of%v hzo& ﬁﬁb Dﬁb aoﬂo %& zﬂ.% sa/,[%uv% %«10 o.mm urewo oure
§F& N g & & & $ & & F =
LIPS S S & & £ 5 $ ~ &
&8 $ 3 9 S N
N < &
o "

40

"S)INSOI SATR[OY :g O[qel

su), Swg g ST'8CGG°LE UL Y%LTY %UT %S6F | SOL'CTFGE 028'006'F TTT'80LT ZI6°76S'T 1303
suwg SWEET $6°€9¢ %6°'T WLV %9C %8°8¥ | 8LO'VIS €6L°TL 29671 981°C¢ 1ojerdogur jdrosysod 1dusisoys
swg swg'g S67T %GEr %01 %LEG | GLT'ES 9¢L°6 707 9P JualId YT st
surg st g1 ST'9€C %LV %60 BLEY | E6TTEE 669°07 908°€T 686°67 SUIYDEW [ENJITA joared
sury swy'g 8°0€ %ITY %TT %ETS | 0G89VT £76°91 769°€ 999°9 aremyjos SurmureiFerp ©Ip
sufy sSwyTe ST'9GL %G €V %897 | 988°078 Y0z 161 087°€C 67€'SE Arerqyp Supurergord oqy3
swg SWOye $G'299 Paid ¢ %667 ‘ 1L8°0L VeE'LT 160°0% I0BupssouI Jue)sul wgprd
s Swg'0¢ SR°TC0'C %097 %6'T %067 | €€9°010°¢ 9FR'CLT £17'69 7€9°L21 Terdiojur wrerdoxd dyd
sury swy’) SL'9T BIVY BET %8TG | 9L IV 6L8°L 0LT°C €48°¢ TOAIDS (oM IDAIISIM-DINOIOTD
swg sy 0z 6199 %VSr %VT %T6V | 0S6°LY6 £21°6S TIV'Se 961211 1ojordzogur urerdord uotyydo
SWGHG SW()°'G6G $9°0 YTEY UST WIES | VIEE G8% T A wosds aseqeyep qpqi-qp-Aoiaq
swg SWE 0z $6°099 %YLV %L0 %L°0G | 906'008°T 929°89T 00L°T€ 9€8'LY 1091po sorydels dund
sur— su— SO0 Nw\ 0 0 0 FIT %.ﬂwhﬁ#: vIpoU qI-ourx
SWITT swg 9Tl $9°¢T %L6Y | 09°6C 082’1 80T (41} I0ye[nuIs (UL} ULIDYX
swg S 6L ST'G0L %81G | LELTVL 81488 v0T°9€ L€0°09 WRYSAS [01)U0D UOISIADL UOISIDA(NS
swg | Swc'g S0°0 o:ﬂmm 78 61 6 J1031pa wowﬂgﬂpw J10109A MGX
swg SWE'ET $9°98 ULLY | TLY'0ST T9LFT 99LTT 1003 Sunyord jordnus
surg sSwg 01 ST'8¢ %8V | T8E'IL 1256 CEVy I9AIOS QoM pdysi
sury swg 91 ST'e8 %6°GY | 695069 €Ir'ee €qr'L weysds uryerodo Xyurur
sur), Swyge SEV8E %LGY | LVG'L8T 060°¢€ £96°C¢ I9AIOS qom pdyyg-orpede
Sy sSwQge ST6VE'T 60T°TLG 126 1L GGTPST J031pa 94X soeud
swQg SWeE'gE S8¥Cl 067671 8L6'8 LN Arexqiy TINX qruxqrq
sur— su— SO0 0 GT1 JOSMOI(oM Nﬁ%ﬁ
smg SWR 9T SRTVVT ﬁwﬂmmm Nw«wﬂhﬁ SWAISAS pappaquio kOnTAwﬁﬁ
swet Sy 0g SR0ET LV6°TLT 799'8 seseqejep a1bs
SWIGT swg L e S0°'€9¢ ﬂwﬂm‘@@ NNWFHH HQOuw\mw Weﬁud&ogo m_»ﬁAOmEOQD
swQT swy'Lg S0°67S FOT°L9G 092°6T supund pg urprent
suwg sy SE1C 0FF'9S 45y JIoMpRU ussqrg
sui), swg 01 ST08 01L'LE 8GG‘L JoAras Axoxd Axoarxd
swg s 91 SO'RE 76¢°C8 [rAKS uoryeorjdde £jmoas udauado
su SWRTHT ST°L89'T GEE'L9T'T GPRLOT 607 ouI3ud oured j0pos
swg SWY'GG 80°€€T LTL'80V 29L'6T j2ia1d 1030rd 10gur tressord el
wﬁnm W_HHH.N_H f@ﬂuhﬂ ‘—‘—mwwm Omorﬂm wwhrhﬁ JOAIOS X IOAIOS-8I0X
sy SWg'TE S0°€GE £92°08¢ 666°'8G 4874 uoryeorjdde jesyspeaids orumus
Suypg swgLE 878°10¢ GEG'68 FGEGT J031po 94X A
sur— su— 0 0 9 aﬁ@@d Jojsuer) [reur [rewrpuas
swig swi1 S1L0¢ 263" 789°C JUSI[D [reul-d pooydi4s
swg Swg gL GEO'ESV'GT PIS'GLS'T 109°ZL0°T woysds Furyesodo xuurp
swg swg LT 2€9°'L2E 88207 266°LE Toe[d erpout uas-rofe[du
surg swg G FPC 16 G6E'C mbhtﬂ 2IeMIJOS [edTjRTID[Rl o>~0w&ﬁ~
swQT Sw. 9z 906'7EL'T TVE'8ST T€6°0S WBYSAS aseqejep [bsadysod
sug swg 91 160°9L€ 18¢°9¢ 8€6°€T 001A108 £1090011p VAT deppuado
Swig sy Ly $G°€20°9 T6V0r0'E 09L°9TY GOV 161 sromourely odwos 203
swg SWY'6% STRIV'G 0T6°LVL'6 1€8'6TL L02°TLe woysds Surperodo psqealy
swmgG swe ([SPLS H@b.mN OmwtOH wrexgoxd STITATUR Arured
S S

S S5 s & o

§&E NS & S A A S X S
= £ ¥ OOQ & = 9&% ? Olb & p/}/ § & % &oﬁ newm & me 1/!1@ OJ,V/»A urewo(aureN
§ &§& § & 8 & & s & & =&

FE <

41

References

Mustafa Al-Hajjaji, Fabian Benduhn, Thomas Thiim, Thomas Leich, and
Gunter Saake. Mutation Operators for Preprocessor-Based Variability. In
Proc. Int’l Workshop on Variability Modelling of Software-Intensive Sys-
tems (VaMoS), pages 81-88. ACM, 2016. doi: 10.1145/2866614.2866626.

Stefan Stanciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wa-
sowski. Concepts, Operations, and Feasibility of a Projection-Based Varia-
tion Control System. In Proc. Int’l Conf. on Software Maintenance and Evo-
lution (ICSME), pages 323-333. IEEE, 2016. doi: 10.1109/ICSME.2016.88.

42

	Extended Formalization
	Logic
	Variation Trees
	Variation Diffs
	Extension: Elif Directives

	Proofs
	Completeness of Variation Diffs
	Proofs for Edit Classes
	Completeness of Edit Classes
	Unambiguity of Edit Classes

	Composite Edits
	ABT+:VaMoS16
	Feature Dependency Operators
	Variability-Mapping Operators
	Domain Artifact Operators
	Conclusion

	SBWW:ICSME16
	Code-Adding Patterns
	Code-Removing Patterns
	Other Patterns
	Conclusion

	Complete Validation Results

