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1 PROOF OF CORRECTNESS OF viewsmart (THEOREM 5.8)

Lemma 1.1. For a variation diff 𝐷 = diff(𝑇b,𝑇a) = (𝑉 , 𝐸, 𝑟, 𝜏, 𝑙,Δ) that is the difference of two variation trees 𝑇𝑖 =

(𝑉𝑖 , 𝐸𝑖 , 𝑟𝑖 , 𝜏𝑖 , 𝑙𝑖 ), 𝑖 ∈ {b, a}, the root, typing, and labels of 𝐷 and 𝑇𝑡 are equal for all times 𝑡 ∈ {b, a}, i.e., 𝑟 = 𝑟𝑡 and

∀𝑣 ∈ 𝑉𝑡 : 𝑙 (𝑣) = 𝑙𝑡 (𝑣) and 𝜏 (𝑣) = 𝜏𝑡 (𝑣).

Proof of Lemma 1.1. Let 𝑡 ∈ {b, a}. As of diff(𝑇b,𝑇a) = (𝑉 , 𝐸, 𝑟, 𝜏, 𝑙,Δ), we also have project(diff(𝑇b,𝑇a), 𝑡) =

project((𝑉 , 𝐸, 𝑟, 𝜏, 𝑙,Δ), 𝑡). The left side simplifies by Definition 5.2 to 𝑇𝑡 . The right side, by definition of project (Equa-
tion 1), simplifies to (𝑉 ′, 𝐸 ′, 𝑟 , 𝜏, 𝑙) with 𝑉 ′ = {𝑣 ∈ 𝑉𝑡 | 𝑡 ∈ Δ(𝑣)} and 𝐸 ′ = {𝑒 ∈ 𝐸𝑡 | 𝑒 ∈ Δ(𝑒)}. Thus, 𝑇𝑡 =

(𝑉𝑡 , 𝐸𝑡 , 𝑟𝑡 , 𝜏𝑡 , 𝑙𝑡 ) = (𝑉 ′, 𝐸 ′, 𝑟 , 𝜏, 𝑙) from which we conclude that 𝑟 = 𝑟𝑡 and ∀𝑣 ∈ 𝑉𝑡 : 𝑙 (𝑣) = 𝑙𝑡 (𝑣) and 𝜏 (𝑣) = 𝜏𝑡 (𝑣). □

Proof of Correctness of viewsmart (Theorem 5.8). Let 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝑟𝑖 , 𝜏𝑖 , 𝑙𝑖 ), 𝑖 ∈ {b, a} be two variation trees
and 𝜌 a relevance. Let 𝐷 = diff(𝑇b,𝑇a) = (𝑉𝐷 , 𝐸𝐷 , 𝑟𝐷 , 𝜏𝐷 , 𝑙𝐷 ,Δ𝐷 ). Our goal is to prove

viewsmart (𝐷, 𝜌) ≡ diff(viewtree (𝑇b, 𝜌), viewtree (𝑇a, 𝜌))

which by definition of semantic equivalence ≡ (Definition 5.3) means that for all times 𝑡 ∈ {b, a}, the following has to
hold:

project(viewsmart (𝐷, 𝜌), 𝑡) = project(diff(viewtree (𝑇b, 𝜌), viewtree (𝑇a, 𝜌)), 𝑡)

The proof works by case analysis on the time 𝑡 and showing that both sides of the equation simplify to the same term.
Case 𝑡 = b:

By definition of project (Equation 1), the left side of our goal simplifies to

project(viewsmart (𝐷, 𝜌), b) = ({𝑣 ∈ 𝑉𝑠𝑚𝑎𝑟𝑡 | b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑣)}, {𝑒 ∈ 𝐸𝑠𝑚𝑎𝑟𝑡 | b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑒)}, 𝑟𝐷 , 𝜏𝐷 , 𝑙𝐷 )

with (𝑉𝑠𝑚𝑎𝑟𝑡 , 𝐸𝑠𝑚𝑎𝑟𝑡 , 𝑟𝐷 , 𝜏𝐷 , 𝑙𝐷 ,Δ𝑠𝑚𝑎𝑟𝑡 ) = viewsmart (𝐷, 𝜌). The right side of our goal simplifies to

project(diff(viewtree (𝑇b, 𝜌), viewtree (𝑇a, 𝜌)), b)

= viewtree (𝑇b, 𝜌)

= (𝑉viewtree
, 𝐸viewtree

, 𝑟b, 𝜏b, 𝑙b)

= (𝑉viewtree
, 𝐸viewtree

, 𝑟𝐷 , 𝜏𝐷 , 𝑙𝐷 )

apply Def. 5.2 by substituting

𝑇b with viewtree (𝑇b, 𝜌)
Eq. 4

Lem. 1.1
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where𝑉viewtree
= viewnodes(𝑇b, 𝜌) and 𝐸viewtree

= 𝐸b ∩ (𝑉viewtree
×𝑉viewtree

). After simplifying both sides, thus our goal is
to prove

({𝑣 ∈ 𝑉𝑠𝑚𝑎𝑟𝑡 | b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑣)}, {𝑒 ∈ 𝐸𝑠𝑚𝑎𝑟𝑡 | b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑒)}, 𝑟𝐷 , 𝜏𝐷 , 𝑙𝐷 ) = (𝑉viewtree
, 𝐸viewtree

, 𝑟𝐷 , 𝜏𝐷 , 𝑙𝐷 ).

To show that both simplified sides are equal, it thus remains to prove that

(I) {𝑣 ∈ 𝑉𝑠𝑚𝑎𝑟𝑡 | b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑣)} = 𝑉viewtree
and

(II) {𝑒 ∈ 𝐸𝑠𝑚𝑎𝑟𝑡 | b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑒)} = 𝐸viewtree
.

(I)

{𝑣 ∈ 𝑉𝑠𝑚𝑎𝑟𝑡 | b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑣)}

= {𝑣 ∈ 𝑉𝑠𝑚𝑎𝑟𝑡 | b ∈ tor(𝐷, 𝑣, 𝜌)}

= {𝑣 ∈ 𝑉𝐷 | tor(𝐷, 𝑣, 𝜌) ≠ ∅, b ∈ tor(𝐷, 𝑣, 𝜌)}

= {𝑣 ∈ 𝑉𝐷 | b ∈ tor(𝐷, 𝑣, 𝜌)}

= {𝑣 ∈ 𝑉𝐷 | b ∈ Δ𝐷 (𝑣), 𝑣 ∈ viewnodes(project(𝐷, b), 𝜌)}

= {𝑣 ∈ 𝑉𝐷 | b ∈ Δ𝐷 (𝑣), 𝑣 ∈ viewnodes(𝑇b, 𝜌)}

= {𝑣 ∈ 𝑉b | 𝑣 ∈ viewnodes(𝑇b, 𝜌)}

= viewnodes(𝑇b, 𝜌)

= 𝑉viewtree

Eq. 10

def𝑉𝑠𝑚𝑎𝑟𝑡 via Eq. 10

simplify

Eq.9

def D

Def. 5.2

simplify

def𝑉viewtree

(II)

{𝑒 ∈ 𝐸𝑠𝑚𝑎𝑟𝑡 | b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑒)}

= {(𝑣,𝑤) ∈ 𝐸𝑠𝑚𝑎𝑟𝑡 | b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑣), b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑤)}

= {(𝑣,𝑤) ∈ (𝐸b ∩ (𝑉𝑠𝑚𝑎𝑟𝑡 ×𝑉𝑠𝑚𝑎𝑟𝑡 )) | b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑣), b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑤)}

= {(𝑣,𝑤) ∈ 𝐸b | (𝑣,𝑤) ∈ 𝑉𝑠𝑚𝑎𝑟𝑡 ×𝑉𝑠𝑚𝑎𝑟𝑡 , b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑣), b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑤)}

= {(𝑣,𝑤) ∈ 𝐸b | 𝑣 ∈ 𝑉𝑠𝑚𝑎𝑟𝑡 ,𝑤 ∈ 𝑉𝑠𝑚𝑎𝑟𝑡 , b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑣), b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑤)}

= {(𝑣,𝑤) ∈ 𝐸b | 𝑣 ∈ {𝑣 ∈ 𝑉𝑠𝑚𝑎𝑟𝑡 | b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑣)},𝑤 ∈ {𝑣 ∈ 𝑉𝑠𝑚𝑎𝑟𝑡 | b ∈ Δ𝑠𝑚𝑎𝑟𝑡 (𝑣)}}

= {(𝑣,𝑤) ∈ 𝐸b | 𝑣 ∈ 𝑉viewtree
,𝑤 ∈ 𝑉viewtree

}

= {(𝑣,𝑤) ∈ 𝐸b | (𝑣,𝑤) ∈ 𝑉viewtree
×𝑉viewtree

}

= 𝐸b ∩ (𝑉viewtree
×𝑉viewtree

)

= 𝐸viewtree

Eq. 10

def 𝐸𝑠𝑚𝑎𝑟𝑡

(I)

def 𝐸viewtree

Case 𝑡 = a:
Analogous to the first case 𝑡 = b.

□
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